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Superparamagnetic micro-bead chains and microswimmers under the influence of

an oscillating magnetic field are studied experimentally and numerically. The

numerical scheme composed of the lattice Boltzmann method, immersed boundary

method, and discrete particle method based on the simplified Stokesian dynamics is

applied to thoroughly understand the interaction between the micro-bead

chain (or swimmer), the oscillating magnetic field, and the hydrodynamics drag.

The systematic experiments and simulations demonstrated the behaviors of the

microchains and microswimmers as well as the propulsive efficiencies of the

swimmers. The effects of key parameters, such as field strengths, frequency, and

the lengths of swimmer, are thoroughly analyzed. The numerical results are

compared with the experiments and show good qualitative agreements. Our results

proposed an efficient method to predict the motions of the reversible magnetic

microdevices which may have extremely valuable applications in biotechnology.
VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939945]

I. INTRODUCTION

Magnetorheological (MR) suspension is an artificial and smart fluid comprising superpara-

magnetic solid particles suspended in a nonmagnetic solvent. Because of the superparamagnetism

of these microbeads, they can be manipulated by an applied external magnetic field and have

been popularly used in microfluidics to design micro devices, such as micromechanical sensors,1,2

micromixers3–5 and artificial swimmers,6–8 as well as micro-total-analytical-systems devices,

which are tools for biological and biochemical analyses.9 The distinct behaviors of such magnetic

particles are observed under various field configurations, and such different patterns are important

issues to their application. Kang et al.4 suggested the periodic breaking and reformation behavior

of the rotating chain as the most efficient way to induce mixing of fluids at the micro scale.

However, ruptures in the oscillating chains severely decrease the swimming efficiency of micro-

swimmers.8 To effectively employ an dynamical magnetic micro-bead chain to their potential

applications, detailed understandings of the dynamics and behaviors are essential. Therefore, both

the computational and experimental investigations into the dynamics of the magnetic micro-

spheres have drawn much attention in recent years. Experimental studies conducted by Melle

et al.10–13 investigate the dynamics of multiple-interacting particle chain structures. The dimen-

sionless Mason number (Mn) defined as the ratio of induced drag to dipolar attraction is

employed to describe the various dynamical behaviors of the rotating microchains. The dynamics

of the numerical results demonstrated by Melle et al.11–13show good agreement with their
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previous experiments, even thought the effect of hydrodynamic interaction between the particles

is ignored in their scheme. Gao et al.14 focus on the controlled rotational dynamics of a single

magnetic particle chain in an infinite fluid domain through experimental and numerical studies.

In addition, a novel dimensionless parameter (Rt) is derived as the control parameter to define

the dynamics of the rotational bead chain. Yadav et al.15 and Krishnamurthy et al.16 suggested

that the particle dynamics method can accurately predict the microbead chain dynamics.

As to the investigations into the dynamics of the oscillating chains, Li et al.7,17–19 per-

formed systemic experiments to define the distinct behaviors of the microchain subjected to an

external field composed of a static directional field and dynamical perpendicular component.

Their experimental results suggested that the criterion of structural stability of the oscillating

chain can be effectively determined by the value of (N � Mn1/2), which was confirmed by Lin

et al.20 via various experiment conditions with stronger viscous solvent and various diameters

of magnetic microbeads. Moreover, the mechanisms concerning the structural instability of an

oscillating micro-bead chain are also addressed based on systematic experiments.20 Compared

with the rotating chain, less attention has been drawn to the numerical and experimental com-

parisons of such an oscillating chain. Although there is much previous experimental work on

dynamics of suspended magnetic particles subjected to an oscillating field, the behaviors of the

chain are not predicted accurately, because the stability criterions were derived from the experi-

mental results. Motivated by these works, we numerically and experimentally study the motions

of magnetic chains formed by superparamagnetic particles as active microswimmers. In the

present work, 3D simulations are conducted to investigate the dynamical mechanism of the

magnetic microchain and magnetic microswimmer by using a hybrid method of the lattice

Boltzmann method,21 immersed boundary method22 and discrete particle method based on the

simplified Stokesian dynamics. The numerical results compared with the experiments show

good qualitative agreements and propose an efficient method to predict the motions of the

reverse microdevices which may have extremely valuable applications in medicine, biology,

and material science.

II. NUMERICAL METHODS

The behaviors of a magnetic chain and swimmer are dominated by the competition

between magnetic forces and induced hydrodynamic drags. Therefore, both the particle-

particle interaction and the particle-fluid have to be considered in the simulations. In order to

simulate the dynamical behaviors of magnetic chain and swimmer, a hybrid numerical

scheme, which consists of lattice Boltzmann method, immersed boundary method, and dis-

crete particle method, is implemented in the present study. The fluid flow is solved numeri-

cally by the lattice Boltzmann method. To deal with solid particles, immersed boundary

method is adapted. Finally, the discrete particle method is used to describe the motion of

these solid particles.

Lattice Boltzmann method is employed to simulate fluid flows in this study. A feature of

lattice Boltzmann different from other numerical methods is that the velocity space of the fluid

particles is also discretized. This means particles can only move in certain finite number of

directions. The directions the particle allowed to move depend on the chosen lattice discretiza-

tion scheme. Thus, lattice Boltzmann equation at position x and time step t is described as

fi xþ ciDt; tþ Dtð Þ � fi x; tð Þ ¼
1

s
fi x; tð Þ � f eq

i x; tð Þ
� �

; (1)

where distribution function fi represents the motion of the virtual particle for each velocity

direction at each lattice point, ci is the lattice speed in direction i, s denotes the relaxation time

determined from velocity of virtual particle and kinematic viscosity, and f eq
i is the local distri-

bution function, which is obtained from Maxwell-Boltzmann equilibrium distribution.23 The lat-

tice Boltzmann method associated with 3D15V model24 is used to solve the fluid flow.
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Implementation of this lattice Boltzmann method is quite standard in common studies of com-

putational fluid dynamics, so that the readers are referred to Ref. 21 for more details.

Magnetic beads are regarded as spherical solid objects in this present work. In order to

model spherical objects in flow calculation with lattice Boltzmann method, immersed boundary

method developed by Peskin22 is implemented to simulate particle dynamics. The particles are

treated as elastic deformable objects with high stiffness in this method. Fig. 2 shows an exam-

ple for explanation of immersed boundary method. As shown in Fig. 1(a), a particle is discre-

tized into small segments with boundary points, which can be slightly distorted from its original

position due to the influences of surrounding flow. The distortion of boundary points is resulted

from the restoring forces of Hook’s law acting on the particle. These forces can be calculated

as interaction force between particles and fluids.

In the present study, the structure of triangle segments shown in Fig. 1(b) is used to repre-

sent spherical magnetic particle. The number of boundary points for a single magnetic particle

is Nb¼ 402. For easy understanding, the spherical particle shown in Fig. 1(b) is only divided

into 6 pieces by 5 plains in horizontal directions, which creates 21 boundary points on each

side. We use the 402 boundary points on the spherical surface arranged in the same way, when

the spherical particle is divided into 20 pieces by 19 plains in horizontal direction. Influences

of surrounding fluids on magnetic particles are calculated from discrepant velocity between par-

ticle and flow around each boundary point. Interaction force obtained by this immersed bound-

ary method is treated as an external force and can be applied to flow simulation by the lattice

Boltzmann equation expressed in Eq. (1).

In order to completely describe the motion of the magnetic particles, the discrete particle

method is implemented. The translational and rotational equations of particle motion are

expressed as

MN
dUN

dt
¼
XNb

n¼1

knMn þ Fcol
N þ FM

N ; (2)

IN
dxN

dt
¼
XNb

n¼1

xNn � xNð ÞknNn þ Tcol
N þ TM

N þ TH
N ; (3)

where N is the total number of particle, MN and UN, respectively, denote the mass and transla-

tional velocity, n is the boundary point number, Nb is the total number of boundary points,

k is the stiffness, nMn is the deformation of boundary point, Fcol
N and Tcol

N stand for the force

and torque, respectively, FM
N and TM

N are the force and torque of magnetic dipole-dipole

FIG. 1. Example of 2D and 3D arrangements of boundary points on the surface of the spherical particle by using immersed

boundary method.
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interactions, respectively, and IN is the moment of inertia. Angular velocity and magnetic tor-

que are represented by xN and TH
N , respectively. Simulations performed in uniform magnetic

field are applied at each time step. Therefore, both the magnetic force and torque caused by

magnetic dipole-dipole interaction are considered. On the other hand, only torque is generated

by magnetic field. The magnetic dipole-dipole interaction force acting between particles i and

j is described as

FM
ij ¼

3

4pl0r3
ij

mi � mjð Þ
rij

rij
� 5 mi � rijð Þ mi � rijð Þ

rij

r3
ij

þ mi � rijð Þmj þ mj � rijð Þmi
� � 1

rij

" #
: (4)

Here, l0¼ 4p� 10�7 N/A2 is the magnetic permeability of free space, also named as vacuum

permeability; mi, and mj are strength of magnetic dipole moment for ith and jth particle, respec-

tively; and rij is distance between particle i and j. Magnetic dipole moment of a spherical parti-

cle in a fluid is given by

mi ¼
1

2
p

lp � lf

lp � 2lf

� �
lf d

3
i H0; (5)

where di is particle diameter, H0 is applied magnetic field vector, and lf and lp are permeabil-

ity of fluid and magnetic particle, respectively. We assume lf¼l0¼ 4p� 10�7 N/A2,

lp¼ 100l0. The magnetic dipole-dipole interaction torque and magnetic field torque are

described in the following equations:

TM
ij ¼

3

4pl0r3
ij

mi � mjð Þ �
3

r2
ij

mj � rijð Þmi � rij

" #
; (6)

TH ¼ mi � H0: (7)

III. NUMERICAL CONDITIONS

Fig. 2 illustrates the 3D analytical model for simulating the behaviors of magnetic micro-

chain and magnetic microswimmer. As depicted in the figure, the models of chains consisting

of particles with different sizes are constructed to simulate moving swimmers. The numbers of

lattices on the x, y, and z axes (denoted as Lx, Ly, and Lz, respectively) are 100, 50, and 100,

respectively. For simulating the chain comprising 9 particles (denoted as P9 chain), the numeri-

cal region of Lx:Ly:Lz¼ 100:50:100 is adopted. As to the simulation for a longer chain com-

posed of 15 particles, we use Lx:Ly:Lz¼ 150:50:150 lattices as the basic numerical region. A

periodic boundary condition is imposed in all directions. Moreover, the larger particle with di-

ameter of 4.5 lm is corresponding to 8 lattices in numerical model, while the smaller diameter

of 2.8 lm is 5 lattices. To investigate effects of controlling parameters on the behavior of par-

ticles, various strengths of field Hd and Hp as well as the frequency of an oscillating magnetic

field f are applied. Total time step is 4� 105 and the frequency f¼ 2Hz corresponds to 2� 105

time steps. During the simulations, we assume the static directional magnetic field Hd aligning

in the z direction and sinusoidal oscillating magnetic field Hp is parallel to the x direction. Note

that the representative images of numerical results are all shifted 90� clockwise in Section V to

compare with the experimental snapshot and analyze the motions of the chains and swimmers

conveniently.

IV. EXPERIMENTAL PROCEDURE

The experimental method in this present work is mostly the same as what was addressed

by Li et al.7,8 Micro-sized magnetic particles are initially dispersed in distilled water.

Superparamagnetic particles composed of iron oxide grains (Fe3O4) embedded in polystyrene
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microspheres were used to create linear chains and microswimmers. To observe and manipulate

the particles simply and conveniently, microbeads with diameters d¼ 4.5 lm and 2.8 lm and

susceptibility v¼ 1.6 and 1.0, respectively, were used. The superparamagnetic property of these

particles reveals that they are magnetized under an external field and completely demagnetized

when the field is removed, thus enabling the creation of various reverse micro-devices.

To create the microchain and microswimmer, two magnetic fields were employed. The

chain or swimmer was first aligned with a homogeneous static field Hd, generated by a

pair of coils powered by DC power sources. Then, a dynamical sinusoidal field Hv with a

maximum amplitude Hp and an adjustable frequency of f, that is, Hv¼Hp sin(2pft), were

applied in a direction perpendicular to Hd. These two fields have comparable amplitudes,

resulting in an overall oscillating field H0¼HdiþHvj, where i and j are unit vectors in the

directional and perpendicular axis, respectively. Under this field configuration, the phase

angle trajectory of the external field is expressed as hF(t)¼ tan�1[(Hp/Hd)sin(2pft)] associ-

ated with an amplitude of hAmax¼ tan�1(Hp/Hd). Note that the orientations of the Hd and

Hp in experimental scenario are shifted 90� clockwise from the axes depicted in the simu-

lation model.

It is well understood that the behavior of a magnetic chain is dominated by the competition

between magnetic forces and induced hydrodynamic drags, which is defined as a dimensionless

Mason number (Mn). When a chain comprising N particles is subjected to an external field, it

experiences a magnetic torque (Mm) and an opposing viscous torque (Mv) is expressed as5,25

Mm ¼ l0lr

4p
3j~mj2N2

2 2að Þ3
sin 2DhLð Þ; (8)

Mv ¼ 4

3
Npa3 2N2

ln N=2ð Þ gx; (9)

FIG. 2. Analytical model for magnetic microswimmer. Lx:Ly:Lz¼ 100:50:100 and every lattice spacing is one. The mag-

netic swimmer (chain) oscillates along the external field but lags behind by phase lag angles (denoted as �hL). The phase

lag (�hL) is defined by the angle between the centerline of the swimmer and the orientation of the overall field. For a

deformed swimmer, the centerline is replaced by the straight line between the centers of the mass of the first particle (head)

and last particle (tail), as shown in the figure on bottom right.
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Mn ¼ 32gx

l0v2jH0

*

j2
: (10)

Here, l0 and lr are the vacuum permeability and relative permeability of the solvent, respec-

tively; ~m is the dipole moment of a magnetic particle; a is the radius; �hL is the instantaneous

phase angle lag between the field and the chain; and g and x are the solvent fluid viscosity and

angular speed of the chain, respectively.

V. RESULTS AND DISCUSSION

A. Simulations for motions of magnetic microchain

The early experimental literatures7,17 reveal the micro-chains under a dynamical magnetic

field may behave from rigid body motion, bending distortions, and rupture failures. It is

believed that these distinct behaviors may be affected by the key controlling parameters such as

the number (N) and diameter (d) of the beads in the chain and the directional field strength

(Hd). In general, a stronger directional field strength is favorable for stabilizing the structure of

the chain, while the perpendicular field tends to destabilize the chaining structure. In addition,

the interactions between the two components results in the maximum oscillating amplitude and

local instantaneous angular velocities. The dynamical behaviors of an oscillating chain compris-

ing 9 particles (P9 chain) with different diameters subjected to different directional magnetic

field strengths are simulated and shown in Fig. 3. As depicted in Fig. 3(a), the P9 chain in a

stronger directional field strength of Hd¼ 22.21 Oe oscillates stably and rigidly with the field.

Nevertheless, if the directional magnetic field is weakened to Hd¼ 20.26 Oe, a single breakage

of the chain occurs at t¼ 6� 104 as shown in Fig. 3(b), due to the greater instantaneous angular

velocity and induced drag. On the other hand, if a chain composed of smaller beads than those

shown in Figs. 3(a) and 3(b) is subjected to identical weaker field strength of Hd¼ 20.26 Oe,

the microbead chain starts oscillating in a stable structure as shown in Fig. 3(c). The overall

patterns of oscillation appear great similarities with the chain consisting of larger beads shown

in Fig. 3(a). This result indicates that the motions of magnetic microchain are dominated by

both the magnetic interaction force between particles and the viscous force acting on the

dynamical particles in the fluid. The calculations for the interaction forces using the numerical

FIG. 3. Dynamic behaviors of an oscillating chain consisting of 9 beads (P9 chain) with a field strength of Hp¼ 25.08 Oe,

frequency f¼ 2 Hz, and directional field strength of (a) Hd¼ 22.21 Oe and (b) Hd¼ 20.26 Oe for beads with diameter of 4.5

lm and (c) Hd¼ 22.21 Oe for smaller particles with diameter of 2.8 lm.
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method enable us to consider both hydrodynamic and magnetic interactions in a fully coupled

manner.

Fig. 4 demonstrates the pressure distribution around the P9 oscillating chain shown in Fig.

3(b) near the time of rupture, i.e., t¼ 5.0� 104, 5.5� 104, and 6.0� 104. The microchain oscil-

lates in a counterclockwise direction and rupture at middle of the chain at t¼ 6.0� 104.

Apparently, the outer part of the chain experiences higher pressure than the central section, and

the lower pressure area is observed at the opposite side. The particles near the outer part of the

chain move at a faster velocity than the central ones resulting in such pressure distribution.

Consequently, the strong shear force acting on the chain due to the gradient of the pressure

appears and leads to the rupture.

B. Qualitative comparisons between the motions of the experimental and numerical

chains

In this study, qualitative comparisons are carried out between experimental and 3D numeri-

cal dynamic results of magnetic microchains subjected to an oscillating field. In Fig. 5, the ex-

perimental [Figs. 5(a) and 5(b)] and numerical [Figs. 5(c) and 5(d)] results are depicted for the

chains composed of 15 and 14 beads with diameters of 4.5 lm, respectively. In the experimen-

tal case (a), rupture of the chain occurs near the center under weaker directional and dynamical

perpendicular field strength of Hd¼ 18.15 Oe and Hp¼ 18.73 Oe, respectively. These nearly

ideal experiment results demonstrate the magnetic particles which have identical magnetic and

dimensional properties without any external interference result in a static center single particle,

while forces acting on both of its sides are opposite and equal. The nearly identical pattern

simulated from the numerical method is shown in Fig. 5(c), in which the oscillating chain is in

the presence of field strength of Hd¼ 22.21 Oe and Hp¼ 25.08 Oe. Nevertheless, such phenom-

enon is not stable; Gao et al.14 demonstrated a similar pattern for microchains subjected to a

rotating field and reported that the microbeads are neither perfectly monodispersed nor do they

have identical magnetic susceptibilities to lead to such a state of particle dynamics. In addition,

the particle surface interactions along with environmental disturbances such as the nonhomoge-

neity of the applied magnetic field must be considered. Therefore, after one or two cycles of

rupture and reformation, the symmetry of the rupture disappears and the chain quickly shifts to

the behavior as depicted in Figs. 5(b) and 5(d), which reveal the more unstable modes of dual

breakups under the influence of the stronger field strength. It can be understood that the ampli-

tude of an oscillating chain is dependent on the maximum phase angle trajectory of the external

field expressed as hAmax¼ tan�1(Hp/Hd). We can expect that the amplitude and the structural de-

formation of the oscillating chain may become more significant as the ratio of perpendicular

field strength (Hp) to directional field strength (Hd) increases. As shown in the experimental

case of Fig. 5(b), even the increasing directional field strength is favorable for the structural sta-

bility of the chain, when the strength of the dynamical field exceeds a critical value, which is

18.73 Oe<Hp< 25.70 Oe for this case, the more unstable patterns of dual breakages are

observed, i.e., the chain begins to breakup into three separated segments instead of a single

FIG. 4. Pressure distribution of a P9 chain comprising beads with diameter of 4.5 lm subjected to a field configuration of

Hd¼ 20.26 Oe, Hp¼ 25.08 Oe, and f¼ 2 Hz. The strong shear force acting on the chain perpendicular to the direction of the

magnetic attraction force leads to the instability of the structure of the chain.
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breakage near the center of the chain. The detailed experimental discussion of the different pat-

terns of rupture instability were presented by Lin et al.20 On the other hand, a similar dual

breakages pattern of numerical results is shown in Fig. 5(d). When both the static and dynami-

cal field strengths increase to Hd¼ 30 Oe and Hp¼ 48.02 Oe from the weaker strength

Hd¼ 22.21 Oe and Hp¼ 25.08 Oe, a more prominent oscillation with a larger amplitude is

observed. Due to the larger oscillating amplitude within a constant period, the instantaneous

angular velocity and induced drag are also greater. Consequently, instead of a single breakage

near the middle of the chain as shown in Fig. 3, the P15 longer chain begins to rupture into

three segments at t¼ 6� 104 due to the stronger induced drag when the field exceeds a certain

critical strength. The simulated oscillating dynamics of a magnetic particle chain show great

similarities with those observed from the video-microscopy experiments shown in Fig. 5(b).

Therefore, the numerical results obtained from the hybrid lattice Boltzmann method may quali-

tatively describe the dynamics of an oscillating magnetic bead chain, which has potential

applicability in a laboratory-on-chip system.

C. Qualitative comparison of stability criterion

The early reports reveal that the rupture patterns of the magnetic chains are important to

their application. Kang et al.4 and Gao et al.14 proposed that the fracture and reformation of

rotating chains may lead to more efficient mixings. However, rupture in the oscillating chains

significantly compromises the swimming efficiency of micro-swimmers.8 In the worst case, the

swimmer may permanently rupture and fail to carry out its mission. This indicates avoiding the

structural instability of the chain is an important issue. Li et al.17 proposed the criterion value

of N � Mn1/2 for chaining instability through systemic experiments, where N and Mn are

shown in Eqs. (8)–(10), and represent the number of particle and dimensionless Mason number,

FIG. 5. Dynamic behaviors of ruptured oscillating magnetic microchain. Experiments: [(a) and (b)] and simulations: [(c)

and (d)]. In the experimental case, the microchain composed of 14 particles (P14) subjected to a weaker field strength of (a)

Hd¼ 18.15 Oe and Hp¼ 18.73, and stronger conditions (b) Hd¼ 24.15 Oe and Hp¼ 25.70 Oe, with an identical frequency

f¼ 1Hz. The numerical P15 chain is subjected to fields of (c) Hd¼ 22.21 Oe and Hp¼ 25.08 Oe, and (d) Hd¼ 30.00 Oe and

Hp¼ 48.02 Oe with f¼ 2 Hz.
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respectively. In this study, the numerical method is implemented to predict the instability of the

chain by calculating the N � Mn1/2. The values of N � Mn1/2 before ruptures in their corre-

sponding critical field conditions are depicted in Fig. 6. The rupture instabilities all occur at the

moment when N � Mn1/2¼ 2.6� 105–3� 105 near t¼ 6� 104, corresponding with the rupture

cases as shown in Figs. 3 and 5. Qualitatively, the numerical stability criterion shows a similar

trend to the experimental results, which can be used to predict the structural instability of the

oscillating chains or swimmers.

D. Motions of magnetic microswimmer

The motions of the experimental [Figs. 7(a)–7(c)] and numerical [Figs. 7(d)–7(f)] micro-

swimmers with different configurations are demonstrated in Fig. 7. All swimmers are first

formed by applying a static directional field strength of Hd¼ 24.15 Oe, then a dynamical oscil-

lating field strength of Hp¼ 25.08 Oe with increasing frequency is applied to generate propul-

sion for swimming. As shown in Fig. 7, all swimmers start accelerating at t> 2.9 s or time

step¼ 0.5� 105, when the oscillating frequencies are raised to 10–11 Hz. As a result, swimmers

apparently move toward the directions of their centers of mass (larger particles), i.e., they move

right in Fig. 7.

To investigate the forces distribution of the oscillating swimmer, dynamics simulations are

performed. Fig. 8 illustrates the pressure distribution around the S3L1 microswimmer shown in

Fig. 7(e). A strong gradient of pressure is observed when the structure of the swimmer experi-

ences an accelerated process (t> 1.02� 105and t> 1.1� 105), in which the hydrodynamic drag

acting on the swimmer increases. Moreover, at the paddling time steps of the microswimmer,

the pressure distribution around the large particle differs from the counterpart near the tail of

the microswimmer. Such asymmetric distribution comes from the different diameters of par-

ticles and the shifting mass of center of the microswimmer. Consequently, the asymmetry of

FIG. 6. Evolutions of the numerical values of N�Mn1/2 for the cases demonstrated in Figs. 3 and 5 within 1.5� 105 time

steps. The chains are ruptured if the manipulating conditions exceed the stable criterion value of N�Mn1/2¼ 2.6

� 105–3� 105.
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particles motion and flow pattern is essential to generate propulsive force which drives the

magnetic microswimmer to move forward.

E. Effects of controlling parameters on propulsive efficiency of microswimmer

The effect of various controlling parameters, such as the oscillation frequency, numbers,

and diameters of the beads in the swimmer and the field strength, are investigated to obtain

more insights into manipulating the swimmer by the numerical method. To investigate the

propulsive efficiency for swimmers under various controlling parameters, the dimensionless

Strouhal number (St) defined as St¼ fA/U is applied, where U and A represent the forward

velocity and the oscillating amplitude of the swimmer, respectively, and f is the oscillating

frequency.

The evolutions of the Strouhal numbers of the S3L1 swimmer in various controlling param-

eters are depicted in Fig. 9. All swimmers are subjected to an identical dynamical perpendicular

field strength of Hp¼ 25.08 Oe with various directional field strengths and oscillating frequen-

cies. It is well known that the Strouhal numbers of effective natural swimmers ranged between

0.25 and 0.4.26–28 Apparently, the S3L1 swimmer manipulated under the weaker field strength

of Hd¼ 24.15 Oe with a frequency f¼ 11 generates the most ineffective propulsion and results

in an average St of 26.7. More propulsive efficiency is obtained from lowering the frequency to

f¼ 5.5 Hz or increasing the directional field strength to Hd¼ 36.23 Oe, resulting in the lower

average Sts of 5.9 and 2.1, respectively. Through a more detailed inspection of the oscillating

trajectories for the S3L1 swimmer manipulated under different controlling parameters, we can

FIG. 7. Images of three types of microswimmers under field strengths of Hd¼ 24.15 Oe and Hp¼ 25.08 Oe with a fre-

quency of f¼ 10–11 Hz. The S2L1 (stands for the swimmer consisting of 2 small and 1 large particles), S3L1, and S2L2

shown in (a), (b), and (c) are obtained from video-microscopy experiments, whereas (d), (e), and (f) demonstrate the numer-

ical patterns of the three swimmers. The black arrows inside images represent the strength and orientation of the overall

field.
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further understand the mechanism of the distinct performances. Fig. 10 compares the oscillating

trajectories between the head and tail of S3L1 swimmer under the influence of varying field

strengths and frequencies. As shown in Fig. 10, the S3L1 swimmer manipulated by a stronger

directional field strength of Hd¼ 36.23 Oe leads to more asynchronous phase angle trajectories

FIG. 8. Pressure distribution of the micro swimmer consisting of three small and one large particles (denoted as S3L1)

under field strengths of Hd¼ 25.08 Oe, Hd¼ 24.15 Oe, and frequency is 11 Hz. The swimmer oscillates counterclockwise at

time step t¼ 1.02� 105 and starts oscillating clockwise between t¼ 1.06� 105 and 1.14� 105.

FIG. 9. Evolutions of correspondent values of the Strouhal number for S3L1 swimmer subjected to different directional

field strength and oscillating frequencies.
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between head and tail. This more asymmetric oscillation resulting in a wiggling motion as a

travelling sine is favorable for propulsive efficiency. In addition, the superior efficiency can

also be explained physically by the definition of the Strouhal number, i.e., St¼ fA/U. Li et al.17

suggested an external field of a stronger directional component tends to dampen the overall

oscillating pattern. Therefore, it can be expected that the lower amplitude associated with the

stronger directional field may reduce the average St and increase the propulsive efficiency. On

the other hand, when the swimmer is subjected to a weaker Hd of 24.15 Oe, the trajectories of

the head and tail particle appear more synchronous. In addition, the trajectory pattern appa-

rently deviates from the original sinusoidal oscillation. As a result, the swimmer oscillating as a

rigid body leads to inefficient propulsion.

Using the definition of the Strouhal number, we can understand that the lower frequency

may reduce the St and increase the propulsive efficiency. However, the swimmer or chain

oscillating with the external field with lower frequency shows higher amplitude, as depicted

in Fig. 10. This counter effect may increase the St, and therefore the average St for the

swimmer at a lower frequency may be higher than in an external field of a stronger direc-

tional component.

The effect of the other controlling parameter on the swimmer’s propulsive efficiency is dis-

cussed via various configuration of the swimmer. Table I displays the corresponding moving

efficiencies of the three types of microswimmers, as shown in Fig. 7. Under an identical field

strength of Hd¼ 24.15 Oe, Hp¼ 36.23 Oe, and frequency of f¼ 11 Hz, both the experimental

and numerical values indicate the most efficient configuration is the S2L2 swimmer.

Qualitatively, the numerical patterns of the swimmers and propulsive efficiency show very close

agreements with the experimental results. Finally, such a numerical model provides a rapid way

of determining the more efficient configuration of swimmers for biomedical applications.

FIG. 10. Phase angle trajectories of the head and tail of the S3L1 swimmer under various field strengths and oscillating fre-

quencies within 4� 104 arbitrarily oscillating time steps.

TABLE I. Average Strouhal numbers (Stav) of different configurations of swimmers as shown in Fig. 7. For effective natu-

ral swimmers, the Strouhal numbers ranged between 0.25 and 0.4.26–28 Both experimental and numerical results indicate

that the most effective propulsion is generated by the S2L2 swimmer.

Swimmers S2L1 S3L1 S2L2

Stav (experiment) 328 36.8 20.57

Stav (simulation) 55.24 26.7 10.9
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VI. CONCLUSIONS

In this study, the motions of magnetic microbead chains and swimmers subjected to an

oscillating field are analyzed numerically and experimentally. The hybrid method of the lattice

Boltzmann method, immersed boundary method, and discrete particle method are implemented

to simulate the behaviors of these particular magnetic microdevices. The patterns of the struc-

tural stability and instability of the oscillating chain simulated by the numerical scheme show

great similarities with those observed from video-microscopy experiments. In addition, the flow

properties around the magnetic microchain and magnetic microswimmer, such as the pressure

distribution of the flow, were investigated from the simulation results. It was found that the

strong shear force acting on the chain due to the gradient of the pressure leads to the rupture.

Moreover, the global criterion for rupture instability given by the value of N�Mn1/2 is qualita-

tively confirmed by simulations. The calculations for the interaction forces using the numerical

method enable us to consider both hydrodynamic and magnetic interactions in the oscillating

chains.

The influences of the controlling parameters on the swimmer’s propulsive efficiency

defined by the Strouhal number are thoroughly discussed in this study as well. Swimmers in the

presence of a stronger directional field strength and higher oscillating frequency result in more

asynchronous phase angle trajectories between head and tail. Such a greater asymmetric oscilla-

tion is favorable for propulsive efficiency. On the other hand, the efficiency of swimmers with

different number and size beads were examined by experiments and simulations. The swimmer

with the most efficient propulsion predicted by the numerical method is consistent with the ex-

perimental counterpart. In conclusion, the 3D hybrid numerical method provides an efficient

method for our experimental setup to experimentally manipulate an oscillating magnetic bead

chain and design the optimum microswimmer for applications in biotechnology.

ACKNOWLEDGMENTS

Financial support from the Ministry of Science and Technology of Republic of China (Taiwan)

through Grant Nos. NSC 102-2221-E-009-051-MY3 and MOST 104-2218-E-606-001 is

acknowledged.

1C. Goubault, P. Jop, M. Fermigier, J. Baudry, E. Bertrand, and J. Bibette, Phys. Rev. Lett. 91, 260802 (2003).
2A. Cebers, Curr. Opin. Colloid Interface Sci. 10, 167 (2005).
3S. Biswal and A. Gast, Anal. Chem. 76, 6448 (2004).
4T. G. Kang, M. A. Hulsen, P. D. Anderson, J. M. J. den Toonder, and H. E. Meijer, Phys Rev E 76, 66303 (2007).
5T. Roy, A. Sinha, S. Chakraborty, R. Ganguly, and I. Puri, Phys Fluids 21, 027101 (2009).
6R. Dreyfus, J. Baudry, M. Roper, M. Fermigier, H. Stone, and J. Bibette, “Microscopic artificial swimmers,” Nature 437,
862 (2005).

7Y. H. Li, S. T. Sheu, J. M. Pai, and C. Y. Chen, J. Appl. Phys. 111, 07A924 (2012).
8Y. H. Li, H. C. Lin, and C. Y. Chen, IEEE Trans. Magn. 49(7), 4120 (2013).
9M. Dufva and C. B. Christensen, Expert Rev. Proteomics 2(1), 41–48 (2005).

10S. Melle, G. G. Fuller, and M. A. Rubio, Phys. Rev. E 61, 4111 (2000).
11S. Melle, O. G. Calder’on, M. A. Rubio, and G. G. Fuller, J. Non-Newtonian Fluid Mech. 102, 135 (2002).
12S. Melle, O. G. Calder’on, G. G. Fuller, and M. A. Rubio, J. Colloid Interface Sci. 247, 200 (2002).
13S. Melle, O. G. Calder’on, M. A. Rubio, and G. G. Fuller, Phys. Rev. E 68, 041503 (2003).
14Y. Gao, M. A. Hulsen, T. G. Kang, and J. M. J. den Toonder, Phys. Rev. E 86, 041503 (2012).
15A. Yadav, R. Calhoun, P. Phelan, A. K. Vuppu, A. A. Garcia, and M. Hayes, IEE Proc. Nanobiotechnol. 153, 145 (2006).
16S. Krishnamurthy, A. Yadav, P. Phelan, R. Calhoun, A. Vuppu, A. Garcia, and M. Hayes, Microfluid. Nanofluid. 5, 33

(2008).
17Y. H. Li, C. Y. Chen, S. T. Sheu, and J. M. Pai, Microfluid. Nanofluid. 13, 579 (2012).
18Y. H. Li, H. C. Lin, and C. Y. Chen, Microfluid. Nanofluid. 14, 831 (2013).
19Y. H. Li, E. Bansal, and C. Y. Chen, Magnetohydrodynamics 50(1), 19 (2014).
20H. C. Lin, Y. H. Li, and C. Y. Chen, Microfluid. Nanofluid. 17(1), 73 (2014).
21G. McNamara and G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988).
22C. S. Peskin, Acta Numer. 11, 479–517 (2002).
23X. He and L. S. Luo, Phys. Rev. E 55(6), R6333 (1997).
24S. Chen, Z. Wang, X. Shan, and G. D. Doolen, J. Stat. Phys. 68(3–4), 379–400 (1992).
25S. Biswal and A. Gast, Phys. Rev. E 69, 041406 (2004).
26G. S. Triantafyllou, M. S. Triantafyllou, and M. A. Grosenbaugh, J. Fluids Struct. 7, 205–224.(1993).
27G. K. Taylor, R. L. Nudds, and A. L. R. Thomas, Nature 425, 707–711 (2003).
28C. Eloy, J. Fluids Struct. 30, 205–218 (2012).

011902-13 Ido et al. Biomicrofluidics 10, 011902 (2016)

http://dx.doi.org/10.1103/PhysRevLett.91.260802
http://dx.doi.org/10.1016/j.cocis.2005.07.002
http://dx.doi.org/10.1021/ac0494580
http://dx.doi.org/10.1103/PhysRevE.76.066303
http://dx.doi.org/10.1063/1.3072602
http://dx.doi.org/10.1038/nature04090
http://dx.doi.org/10.1063/1.3675269
http://dx.doi.org/10.1109/TMAG.2013.2241028
http://dx.doi.org/10.1586/14789450.2.1.41
http://dx.doi.org/10.1103/PhysRevE.61.4111
http://dx.doi.org/10.1016/S0377-0257(01)00174-4
http://dx.doi.org/10.1006/jcis.2001.8087
http://dx.doi.org/10.1103/PhysRevE.68.041503
http://dx.doi.org/10.1103/PhysRevE.86.041503
http://dx.doi.org/10.1049/ip-nbt:20060009
http://dx.doi.org/10.1007/s10404-007-0214-z
http://dx.doi.org/10.1007/s10404-012-0974-y
http://dx.doi.org/10.1007/s10404-012-1094-4
http://dx.doi.org/10.1007/s10404-013-1286-6
http://dx.doi.org/10.1103/PhysRevLett.61.2332
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1103/PhysRevE.55.R6333
http://dx.doi.org/10.1007/BF01341754
http://dx.doi.org/10.1103/PhysRevE.69.041406
http://dx.doi.org/10.1006/jfls.1993.1012
http://dx.doi.org/10.1038/nature02000
http://dx.doi.org/10.1016/j.jfluidstructs.2012.02.008

	s1
	l
	n1
	s2
	d1
	d2
	d3
	f1
	d4
	d5
	d6
	d7
	s3
	s4
	d8
	d9
	f2
	d10
	s5
	s5A
	f3
	s5B
	f4
	s5C
	f5
	s5D
	f6
	s5E
	f7
	f8
	f9
	f10
	t1
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28

